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Abstract

Rocky shore ecology has been studied for a long time, starting with qualitative descriptions
and becoming more quantitative and experimental over time. Some of the earliest manipula-
tive experimental ecological studies were undertaken on rocky shores. Many, over time, have
made considerable contributions to ecological theory, especially highlighting the importance
of biological interactions at the community level. The suitability of rocky shores as convenient
test systems for ecological experimentation is outlined. Here we consider contributions from
rocky shores to the emerging concepts of supply-side ecology, the roles of competition, pre-
dation and grazing, disturbance and succession and positive interactions in structuring com-
munities along environmental gradients. We then address alternative stable states,
relationships between biodiversity and ecosystem functioning, and bottom-up and top-
down control of ecosystems. We briefly consider the feedback and synergies between eco-
logical concepts and experimental work on rocky shores, whilst still emphasizing the trad-
itional values of marine natural history upheld in JMBA since its first publication. The
importance of rigorous experimental designs championed by Underwood and co-workers
is emphasized. Recent progress taking advantage of new technologies and emerging
approaches is considered. We illustrate how experimental studies have shown the importance
of biological interactions in modulating species and assemblage-level responses to climate
change and informed conservation and management of coastal ecosystems.

Introduction

The intertidal zone has long been an entrance and window on the ocean: people have foraged
for food since pre-history (Thompson et al., 2002); pioneering studies were made by the first
generations of modern naturalists (Audouin & Edwards, 1833; Darwin, 1854); and it was the
playground for the early eco-tourists of the Victorian era (Gosse, 1856; Kingsley, 1859;
Hawkins et al., 2007). Early marine biologists used the seashore for collecting specimens for
taxonomic, morphological, developmental, physiological and behavioural research (Hawkins
et al., 2016). Here we review the contribution that experimental studies on rocky shores
have made to more general ecological concepts and theory.

Formal ecological studies on rocky shores stretch back at least 200 years with Audouin &
Edwards (1833) describing zonation patterns on the rocky shores of northern France. There
then followed a long period of qualitative description and classification of broad patterns of
distribution of conspicuous organisms on rocky shores. How zonation patterns were shaped
by tidal height and wave exposure locally and how these differed geographically, culminated
in the work of Stephenson & Stephenson (1949, 1972), who proposed a universal scheme
of zonation. Similar work, often by their many disciples, led to descriptions of zonation pat-
terns worldwide, sometimes using versions of their three-zone scheme (e.g. Dakin, 1953, in
Australia; Morton & Miller, 1968, in New Zealand; Lewis, 1964, in the British Isles and
Ireland; Morton & Morton, 1983, in Hong Kong; Morton et al., 1998, in the Azores) or devel-
oping new schemes fitting local or regional contexts (e.g. Ricketts & Calvin, 1968, on the
Pacific Coast of America; Branch & Branch, 1981, 1986, in South Africa, updated in Branch
and Branch, 2018; see Raffaelli and Hawkins, 1996, for review of classical descriptive zonation
schemes worldwide). T.A. Stephenson was a superb artist, as were many of his later emulators,
although as colour photography emerged this aided description (see plates in Lewis, 1964).
Many caveats arose for such qualitative classifications, especially on the seaweed-dominated
sheltered shores of the North Atlantic (see Lewis, 1964 and Lewis’s chapter in Stephenson
& Stephenson, 1972). Subsequently, Hawkins & Hartnoll (1983a), from the basis of largely
experimental studies, provided a possible explanation of the causes of the three-zone system
on non-sheltered north-east Atlantic shores.
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Qualitative studies gave way to more quantitative descriptions
of distribution patterns, with precise levelling of intertidal eleva-
tion and counts made in quadrats (Southward & Orton, 1954),
or using semi-quantitative abundance scales (Moyse &
Nelson-Smith, 1963). Colman (1933), publishing in the Journal
of the Marine Biological Association of the United Kingdom
(JMBA), related the limits of individual species to critical tidal
levels on the shore (see also Doty, 1946; Evans, 1947). Colman’s
work was later revisited and statistically refuted by Underwood
(1978). The phytosociological approach of the Zurich–
Montpelier school was deployed to describe algal associations pri-
marily in the Mediterranean Sea (above and below the water line;
for examples see Boudouresque, 1971; Coppejans, 1980).
Phytosociology was also used by Russell (1972, 1973) along
with some early multivariate classification analysis to describe
zonation patterns in the Irish Sea.

In parallel to descriptions, laboratory experiments were used to
explore differential tolerances of species of algae (Baker, 1909,
1910) and invertebrates (Broekhuysen, 1940; Foster, 1971) from
different tidal heights. Higher zoned organisms were shown to
be more tolerant to desiccation and temperature extremes than
those lower on the shore. Wolcott (1973) showed convincingly
for mobile animals that whilst tolerance limits broadly matched
zonation position, most limpet species stayed well within their tol-
erance limits, except for those bordering unexploited resources
high on the shore; these took risks and got caught out when con-
ditions changed. Experiments in the laboratory and on artificial
panels on rafts, as well as on the shore, explored selective larval
settlement behaviour. Barnacles and spirorbids were investigated
by Knight-Jones (1951, 1953), then taken on by Crisp and collea-
gues (Crisp & Knight-Jones, 1953; Crisp & Barnes, 1954), initially
at Menai Bridge in North Wales and then further afield in Britain
(e.g. Millport, Barnes, 1956) and around the world (e.g. at
Beaufort, North Carolina, Rittschof et al., 1984), mostly on barna-
cles related to fouling.

The first experiments in the field probably started in north-
west France before the First World War (Hariot, 1909).
Fischer-Piette and Hatton examined many aspects of biological
interactions from the 1920s onwards at the Dinard Laboratory
of the Paris Natural History Museum, using what would be
recognized now as controlled field experiments (Hatton &
Fischer-Piette, 1932; Hatton, 1938). Post-war and encouraged by
Orton, such approaches were taken up by Jones (1946, 1948),
Lodge (1948), Burrows & Lodge (1951) and Southward (1956)
at Port Erin, Isle of Man exploring the role of limpet grazing –
although visibility of such work was not helped by publication
in largely parochial journals (see Southward, 1964 for summary).
Connell (1961a, 1961b) experimented on the shore at Millport in
the early 1950s and subsequently took this approach back to
California. Perhaps prompted by Renouf & Rees (1932),
Kitching, Ebling and colleagues and students used Lough Hyne
in south-west Ireland as a model experimental system starting
in the 1950s (Kitching et al., 1959; Kitching & Ebling, 1961;
Ebling et al., 1962). Some early work was also done in South
Africa (Broekhuysen, 1940) and Australia (Guiler, 1954; May
et al., 1970). Paine started his experimental work in the early
1960s on the North-west Pacific Coast of the USA (Paine, 1966;
Paine & Vadas, 1969) and elsewhere (New Zealand, Paine,
1971; Chile, Paine et al., 1985; summarized in Paine, 1994).
Such manipulative approaches expanded rapidly from the 1970s
onwards, by the first students of Paine (Dayton, 1971, 1975;
Menge, 1976, 1983; Vadas et al., 1990, 1994) and Connell
(Choat, 1977; Sousa, 1979a, 1979b) and in turn their numerous
subsequent students, mentees and admirers (Lubchenco, 1978,
1980, 1983; Lubchenco & Menge, 1978; Gaines et al., 1985)
around the world. This led to significant early contributions in

the southern hemisphere in Chile (Moreno & Jaramillo, 1983;
Paine et al., 1985; Castilla & Paine, 1987; including the classic
papers on excluding humans collecting seaweeds and inverte-
brates by Castilla and co-workers, Castilla & Duran, 1985;
Castilla & Bustamante, 1989), New Zealand (Luckens, 1970,
1975a, 1975b) and Southern Africa (Branch, 1975, 1976). Much
of this work focused on the role of biological interactions
among species in shaping distributions or community structure.

Following in the footsteps of Paine and Connell, much excel-
lent work has been done since the 1970s on both coasts of
North America, by Dayton, Menge, Lubchenco, Gaines, Vadas,
Bertness and many others (for recent overviews see Dudgeon &
Petraitis, 2019; Fenberg & Menge, 2019). This has in turn influ-
enced work in Chile (Broitman et al., 2001; Aguilera &
Navarrete, 2007, 2012; Aguilera et al., 2013, 2019a) and
Argentina (Bertness et al., 2006; Silliman et al., 2011; Palomo
et al., 2019).

Underwood established a strong experimental ecology school
in Sydney, Australia from the 1970s (e.g. Underwood, 1976,
1978, 1980, 1984, 1998; Underwood & Jernakoff, 1981, 1984;
Underwood et al., 1983) with worldwide influence. He empha-
sized the importance of hypotheses tested using well-designed
experiments and rigorous statistical analyses – any experiments
done should be done properly (Underwood, 1981, 1985, 1986,
1988, 1991a, 1992a). His approach was enthusiastically embraced
by his numerous students (earlier ones including Creese &
Underwood, 1982; Chapman, 1986; Fairweather, 1988;
Chapman & Underwood, 1992), post-docs, visiting fellows, and
a like-minded international network (e.g. Benedetti-Cecchi,
A.R.O. Chapman, Coleman, Aberg, Pavia, Petraitis, Vadas).

Thus experimental studies on rocky shores had become main-
stream from the 1980s – with several subsequent generations of
students and post-docs worldwide (see reviews in John et al.,
1992; Bertness et al., 2001, 2014; Hawkins et al., 2019a, 2019b,
2019c). In New Zealand, Choat brought back insights from his
time with Connell in California (Choat, 1977) and was an early
champion of experimental approaches. Subsequently, Schiel has
combined insight into the natural history of systems with rigorous
experimental approaches (Schiel et al., 2019a). In South Africa,
Branch, McQuaid and students built on the classical work by
the Stephensons to better understand, through experimentation,
underlying processes (McQuaid & Blamey, 2019). Experimental
approaches have also prospered in Hong Kong and beyond in
greater China (Williams et al., 2019).

The viewpoint of intertidal experimental ecology presented
here started in the Isle of Man in the mid-1970s when the lead
author (SJH) was prompted by Hartnoll to revisit the experimen-
tal work done by Jones, Lodge, Burrows and Southward in the late
1940s and 1950s. At the time key influences were the emerging
experimental work by Paine, Connell, Menge and Lubchenco as
well as the work by Southward at the Marine Biological
Association (on long-term climate fluctuations and recruitment,
Southward, 1963, 1967; recovery from oil-spills, Southward &
Southward, 1978; plus Lewis, 1964, and colleagues at Robin
Hoods Bay on the role of recruitment processes on rocky shores
and environmental monitoring, Lewis, 1976; Lewis & Bowman,
1975; Bowman & Lewis, 1977). Another influence was Norton
at Glasgow, a former student of Burrows, who had also com-
menced experimental work on fucoid distributions on the shore
at Millport (e.g. Schonbeck & Norton, 1978, 1980a). SJH with
subsequent students, many of whom have become colleagues
(including two co-authors on this paper) continued the tradition
at Port Erin, on the Isle of Man with further experiments (e.g.
Jenkins et al., 1999a, 1999b, 1999c, 2005; Thompson et al., 2004
jointly working with Hartnoll and Norton), extending into spatial
statistics (Johnson et al., 1997) and modelling (Burrows &
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Hawkins, 1998; Hyder et al., 1998; Johnson et al., 1998a, 1998b,
1998c). This has been aided by a wider network of colleagues in
Europe (including an Italian co-author first met at a conference
in Liverpool on plant–animal interactions in 1990), all interested
in experimental ecology, and able to work together within
European-funded projects and networks. This network of colla-
borators has been profoundly influenced by the Underwoodian
approach to experimental ecology, promulgated by numerous
training workshops by Underwood and Chapman and their
advisory work on European projects such as EUROROCK.

Underwood et al. (2000) succinctly define and discuss differ-
ent approaches to describing pattern in ecology, advocating the
importance of logical and structured quantitative observations
or surveys testing hypotheses about pattern, so-called mensurative
experiments, as the essential basis upon which experimental stud-
ies of process can proceed. Such studies have advanced under-
standing of rocky shore ecology, and are often a stand-alone
precursor (Menconi et al., 1999; Benedetti-Cecchi et al., 2000;
Jenkins et al., 2000; Johnson et al., 2003; Martins et al., 2007,
2008) or a component of wider manipulative studies (Sousa,
1979a; Thompson et al., 2004) generating hypotheses or inform-
ing modelling approaches (Hyder et al., 1998, 2001; Svensson
et al., 2005). We have not, however, extensively considered
them here, other than in the context of supply-side ecology
where experimental manipulations are less feasible.

Here we focus on the use of rocky seashores as a convenient
tractable system for manipulative field experiments on processes
that have contributed to ecological concepts and theory. Firstly,
we outline the reasons why the shore is so amenable to descriptive
and experimental research. Next, we summarize the contributions
that manipulative experimental intertidal ecological studies have
made to general ecological theory at population, community
and ecosystem levels. We then discuss the intertwining of theory
and experiment, the importance of advances in methodology in
developing the field and the opportunities arising from such
new technologies and approaches. We conclude by considering
how experimental approaches have helped understand the role
of biological interactions in responses of marine life to anthropo-
genic climate change as well as informing environmentally sensi-
tive adaptation by society to climate-driven rising seas in the
context of widespread coastal urbanization. We stress this is a
selective and personal view of the topic – not an exhaustive
review. We focus mainly on the seashore but occasionally stray
into the shallow sub-tidal zone, especially in the virtually tide-less
Mediterranean. Furthermore, we have highlighted work done in
Britain and Ireland plus neighbouring north-east Atlantic and
Mediterranean countries – the traditional hinterland of JMBA.
This work has led to the shores of the north-east Atlantic
being some of the most studied in the world (Hawkins et al.,
2019b), with much recent progress in the Mediterranean
(Benedetti-Cecchi et al., 2019).

The seashore as a tractable system

Paine (1966, 1969, 1971, 1974) and Connell (1961a, 1961b, 1972)
as pioneers of experimental ecology have espoused the values of
manipulative field experiments (Connell, 1974; Paine, 1994) and
the appropriateness of the seashore as a test system (see also
Menge & Branch, 2001). As Connell (1974) neatly summarized:
in a laboratory experiment all conditions are held constant
other than those being tested; in contrast, in a field experiment
all the variables are allowed to vary, presumably the same way
in adjacent similar treatment and control plots, other than
those being manipulated (often one or two, rarely more at the
time of his writing, but more complex designs are now more com-
monplace). The seashore has a sharp vertical environmental stress

gradient from low water to beyond the influence of sea spray. This
gradient is largely unidirectional, increasing up shore for the
majority of organisms on rocky shores that have marine evolu-
tionary affinities. For the few organisms of terrestrial origins,
the stress gradient is reversed (Raffaelli & Hawkins, 1996). The
environmental extremes encountered over the short, sharp inter-
tidal gradient are experienced over much larger distances in other
systems. For example, moving a few metres up a rocky shore from
low water can be the equivalent of ascending a 3000 m mountain
in terrestrial systems. There is a horizontal wave action or expos-
ure gradient between sheltered bays and exposed headlands. This
is not unidirectional and many species have optima at intermedi-
ate points between the two extremes (Raffaelli & Hawkins, 1996).
These sharp gradients are locally modified by the topography of
the shore with rockpools, cracks and crevices plus shaded and
unshaded areas reflecting geomorphologically generated habitat
complexity (Johnson et al., 2003). This variety of environmental
conditions in close proximity has made transplant experiments
(with appropriate controls) a powerful tool in understanding
the direct and indirect influences of the environment on the dis-
tribution, abundance, growth and survival of species (e.g.
Schonbeck & Norton, 1978, 1980a). The modulation of the inten-
sity of biological interactions by the physical environment can
also be explored along these sharp local gradients (Bertness &
Leonard, 1997), and amongst local mosaics of micro-habitats
(Johnson et al., 1998b, 2005).

The nature of rocky intertidal organisms also makes them
amenable to manipulation. Most intertidal organisms are reason-
ably sized with the biggest algae being at most 2–3 m in length.
Few animals are bigger than 30 cm and most are less than 10
cm. Most of the suspension feeders are sessile, and many of the
grazers and predators are reasonably slow-moving and sedentary
enabling removal and exclusion experiments. Work over the last
20 years, however, has emphasized the importance of mobile pre-
dators such as foraging by crabs (Silva et al., 2008, 2010, 2014;
Christofoletti et al., 2011) and fish (Taylor & Schiel, 2010)
when the tide is in, and birds when the tide is out (Hockey &
Underhill, 1984; Coleman et al., 1999; Coleman & Hockey,
2008) or by diving (e.g. eider ducks, Hamilton et al., 1999). Few
of the algae and animals live more than a decade or so – although
there are exceptions such as Ascophyllum nodosum where genetic
individuals may live well over 100 years, even if individual fronds
are rarely older than 10 (Åberg, 1992). The relatively low cost and
easy access to rocky shores also greatly facilitates the manipulation
of these organisms for experiments.

Most conspicuous sessile animals and algae compete for a
clearly definable and measurable resource – two-dimensional
space to live on the rocks – providing access to light for plants
and particulate food for suspension-feeders. The flora and fauna
growing on rocky shores can also be partitioned into layers (can-
opy, understorey turf, encrustations) enabling non-destructive
quantification of abundance and elucidation of interaction.
There are none of the invisible and complex below-ground inter-
actions that occur in soils and sediments – although bio-erosion
by burrowing endolithic cyanobacteria and invertebrates such as
sea urchins and molluscs, particularly burrowing piddocks
(Pinn et al., 2008) can modify softer rock habitats, creating com-
plexity. These attributes make the flora and fauna easy to quantify
and manipulate, and to measure response variables primarily
non-destructively. Short lifespans and rapid growth mean that
clearance or removal experiments of dominant canopy-forming
or rock-covering species can occur within 3–5 years – the dur-
ation of most PhDs (but see note of caution from Jenkins &
Uyà (2016) and a plea for longer duration of manipulative marine
studies). Some species do take longer, with maybe 20 or more
years for the recovery of A. nodosum following canopy removal
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(Jenkins et al., 2004; Ingólfsson & Hawkins, 2008). Recovery times
are, however, generally much swifter than in terrestrial systems
where, for example, removal of trees may take hundreds of
years to recover. When recovery does not occur, it can point to
interesting explanations such as alternative stable states
(Benedetti-Cecchi et al., 2015; Petraitis & Dudgeon, 2015;
Menge et al., 2017).

The hard nature of rocks enables various devices such as exclu-
sion fences or cages, settlement plates or tiles, or transplanted
rocks to be attached via screws or quick-set cement or epoxy
glues. Once technological constraints were overcome (e.g. early
use of generators and electric-drills, Dayton 1970, or compressed
air drills, Hawkins & Hartnoll, 1979), the experimental approach
proliferated, particularly since the introduction of petrol-driven
and cordless drills and better fast-setting underwater epoxies.
Thus, grazers and predators have been excluded or enclosed at
varying densities, algal canopies and understorey turfs and
encrusting invertebrates removed, thinned or transplanted, and
the responses of individual species or whole assemblages
measured.

In most regions of the world, the taxonomy of the common
and important species is well understood. Cryptic speciation
can, however, cause problems (e.g. in the North Atlantic and
Mediterranean: Chthamalus stellatus, into C. stellatus and
Chthamalus montagui by Southward, 1976; Fucus spiralis into
F. spiralis and Fucus guiryi by Zardi et al., 2011). Recent develop-
ments in molecular-based genetics and taxonomy have acceler-
ated the detection of cryptic species (Chan et al., 2007, 2012).
However, whilst taxonomic accuracy is essential at the population
level, it is not critical for many community and ecosystem level
studies. For example many community-level studies such as
those making comparisons amongst biogeographic regions, use-
fully lump algae and sessile animal species into functional cat-
egories (canopies, turfs, encrustations, barnacles) or more
nuanced functional groups (e.g. for algae, Steneck & Dethier,
1994).

Contributions to general ecology theory

All of the above attributes have earned rocky shores the label as
the fruit fly of ecology (Berlow, 1997). Below we consider how
experimental research on rocky shores has contributed to general
ecological theory at the population and especially the community
level. Studies on rocky shores have made a major contribution to
emphasizing how recruitment drives populations and the conse-
quences for communities – what has become known as supply-
side ecology (Lewin, 1986). Ground-breaking experiments on
the roles of biological interactions in determining distributions
and shaping communities through competition, grazing and pre-
dation, disturbance and succession, plus positive interactions are
then outlined before turning to alternative stable states, the rela-
tionship between biodiversity and ecosystem functioning, and
the relative importance of bottom-up forcing and top-down con-
trol in ecosystems.

Supply-side ecology

The mechanisms governing the distribution and abundance of
populations of marine benthic invertebrates have been much
debated. The majority of invertebrates living on rocky shores
exhibit a complex life cycle with a pelagic larval phase. Hence
local reproduction and input of new individuals to a particular
site is often decoupled leading to extensive debate regarding the
importance of processes that determine input of individuals (lar-
val transport, supply and settlement) versus processes occurring
after arrival (competition, predation, disturbance, facilitation

following settlement) in determining patterns of adult distribu-
tion and abundance. Much early research on rocky shores focused
on the dominant role of post-settlement processes in determining
observed patterns (Connell, 1961a, 1961b; Paine, 1966; Dayton,
1971; Menge & Sutherland, 1976). For example, Connell’s classic
work on competition in Millport, Scotland showed clearly that the
distribution of Chthamalus spp. on the shore was determined not
by the pattern of settlement but by strong interspecific competi-
tion with Semibalanus balanoides. Connell (1961b) was very
aware of the existence of failure years when S. balanoides recruit-
ment did not occur, indicating a role for pre-settlement processes.
The importance of larval supply and settlement in determining
adult distribution can be represented by the recruitment limita-
tion hypothesis (sensu Doherty, 1981) which states that when lar-
val supply is insufficient for the total population size to reach a
carrying capacity, increases in recruitment will lead to increases
in adult population size (Connell, 1985; Menge, 1991).

The supply and settlement of both invertebrate larvae
(Hawkins & Hartnoll, 1982a; Gaines & Roughgarden, 1985;
Roughgarden et al., 1988; Hunt & Scheibling, 1996; Jenkins
et al., 2000; O’Riordan & Murphy, 2000; McQuaid & Lawrie,
2005) and algal propagules (Reed & Foster, 1984; Åberg &
Pavia, 1997) varies greatly in both space and time.
Observational studies that identify the scales at which variation
occurs have given important insight into the mechanisms deter-
mining the distribution of larvae and ultimately supply to the
shore (Gaines & Roughgarden, 1985). Small-scale local variation
tends to be ubiquitous (Fraschetti et al., 2005), reflecting interac-
tions occurring at or soon after settlement although larger-scale
variability is common indicating the importance of patterns in
the regional larval pool (Barnes, 1956) and regional physical
transport processes (Hughes et al., 1999). Decades of research
have demonstrated clearly that understanding of processes such
as upwelling (Roughgarden et al., 1988), tidal and wind-driven
currents (Hawkins & Hartnoll, 1982a, 1982b; Bertness et al.,
1996; McQuaid & Phillips, 2000), internal waves (Shanks,
1983), surf zone barriers (Rilov et al., 2008) and wave action
(Pfaff et al., 2011), and the way these processes interact with
local and regional coastal topography (Archambault & Bourget,
1996) is required to provide predictive understanding of supply
to the rocky shore. Work of Roughgarden and colleagues on the
central Californian coast showed convincingly that inter-annual
variability in upwelling determines patterns of recruitment across
large areas (Roughgarden et al., 1988; Farrell et al., 1991); while
further north on the coast of Washington, barnacle recruitment
rates are influenced by shoreward transport of offshore plankton,
in surface slicks, generated by tidally forced internal waves
(Shanks, 1983, 1986; Shanks & Wright, 1986).

While physical transport processes determine the rate and tim-
ing of arrival of larvae and propagules to the shore, consideration
of behaviour is paramount in determining settlement patterns
(Jenkins, 2005). Some population or community models assume
that settlement is a function of larval supply and the amount of
free space available (Gaines et al., 1985; Roughgarden et al.,
1985; Hyder et al., 2001). However, reality may be far more com-
plex. For example, Minchinton (1997) demonstrated that recruit-
ment of the tubeworm Galeolaria caespitosa into patches of free
space was related not to patch area but to patch perimeter suggest-
ing an important role for gregarious settlement close to conspeci-
fics. The work of Crisp and co-workers in Menai Bridge, Wales
throughout the 1950s and 1960s was critical in demonstrating
the complex patterns of behaviour and finely tuned discrimin-
atory abilities of invertebrate larvae in response to biological
and physical cues to ensure that settlement occurs in a habitat
that is conducive to survival, growth and, ultimately, reproduc-
tion. For example, the microbiofilm coating the rocky shore is
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the point of first attachment for settling larvae and propagules.
Such films have been shown to promote settlement in a range
of invertebrate larvae (Todd & Keough, 1994; Qian et al., 2007),
with settlers responding to cues such as age of the film, specific
taxa such as diatoms, and film characteristics related to tidal
height (Strathmann et al., 1981). Laboratory analyses of behaviour
have demonstrated the discriminatory abilities of invertebrate lar-
vae to a range of cues, but perhaps field tests of how larvae
respond to multiple cues are more relevant. Thompson et al.
(1998) showed that settling barnacle cyprids could discriminate
among different microbial films in the laboratory environment,
but this was irrelevant under field conditions where the presence
of conspecific cues overruled cues from microbiota. Grosberg
(1981) demonstrated that the larvae of species that are vulnerable
to overgrowth by competitors avoid settling in the presence of a
dominant space occupant, the colonial tunicate Botryllus schlos-
seri; whereas no avoidance was displayed by species that are not
vulnerable. However, a contrasting response was recorded by
Bullard et al. (2004), who failed to detect any avoidance of com-
petitors during larval settlement.

The relevance of spatial and temporal variation in larval sup-
ply to adult populations is ultimately dictated by the fate of set-
tlers. No matter how variable the supply of larvae to the shore,
if the post-settlement process is density-dependent then the vari-
ability will be dampened out (Holm, 1990; Jenkins et al., 2008a).
New arrivals to the rocky shore are subject to radically different
environmental conditions than those experienced in the pelagic
larval environment, and early post-settlement mortality is high.
For example, Gosselin & Qian (1997) reported levels of over
90% mortality during the juvenile period in 20 out of 30 studies
reviewed on invertebrates. The same is true for algae; for example,
Wright et al. (2004) showed that only 2 of 5395 embryos of Fucus
gardneri survived to become visible recruits. Sources of mortality
include desiccation and disturbance, both physical (Vadas et al.,
1990) and biological (Jenkins et al., 1999a).

The integration of levels of larval supply, patterns of settlement
and post-settlement mortality dictate the abundance and distribu-
tion of adults on rocky shores. Following much debate, based on
work on rocky shores and by extensive work on coral reef fish
(Doherty & Williams, 1988; Shima, 2001; Wilson & Osenberg,
2002), a general consensus was reached whereby populations
may be limited by arrival of new individuals when supply and
settlement is relatively low, but at high recruitment sites variabil-
ity in supply and settlement has little impact on adult abundance
owing to strong density-dependent post-settlement processes.
This recruit-adult hypothesis (sensu Menge, 2000a) states that
the relative importance of recruitment declines with increasing
density of recruits (Connell, 1985; Roughgarden et al., 1985;
Sutherland, 1990; Menge, 2000b). Manipulative experimental
work in North Wales on the intertidal barnacle S. balanoides

which shows meso-scale variation in density and recruitment
around Anglesey (Bennell, 1981; Hyder et al., 1998), partially sup-
ports this view, but also shows that recruitment can be a useful
predictor of adult density across all recruit densities, from very
low to very high (Jenkins et al., 2008a). Here the relationship
between recruitment and adult density switched from positive,
at low levels, to negative at high levels (Figure 1) owing to strong
over-compensatory density-dependent mortality. Such considera-
tions are clearly relevant to understand how populations are regu-
lated. However, the supply of individuals across a range of taxa
can also be used in a predictive manner to consider the structur-
ing forces in whole communities. Consistent large-scale differ-
ences in recruitment intensity observed along the Pacific coast
of North America (Connolly et al., 2001) can lead to differences
in the strength of interspecific interactions. Experimental deter-
mination of community organization in Oregon and
Washington where recruitment is high has emphasized the role
of competition and predation. In contrast, in California, where
upwelling-induced larval loss from the coastline is high, the influ-
ence of settlement variation has been stressed (Connolly &
Roughgarden, 1998).

The interplay of ecological theory, data collection, and model-
ling generated many excellent examples of early interdisciplinary
research. Here, collaborations between ecologists and modellers
led to significant advances in understanding of ecology, where
cyclic interactions between experimental work and modelling
occurred. Data were generated to understand processes that
were then used to parameterize models; models highlighted data
gaps and generated hypotheses for further experiments, which
in turn improved models.

Mechanistic models of barnacles have successfully linked
small-scale dynamics of adult benthic populations to large-scale
hydrodynamic models of the larval stage (Roughgarden et al.,
1985, 1987, 1991; Possingham & Roughgarden, 1990; Shkedy &
Roughgarden, 1997; Connolly & Roughgarden, 1998). Thus, a
demographic theory for an open population with space-limited
recruitment has been proposed and tested using data for the bar-
nacle Balanus glandula in California (Gaines et al., 1985; Gaines
& Roughgarden, 1985; Roughgarden et al., 1985). The model pre-
dicted cyclic fluctuations in free space at high settlement rates, but
could not explain the 30-week period of these cycles
(Roughgarden et al., 1985), which led to further experiments
and modelling to develop understanding of the system. Later
models showed that at critical density of barnacles they are
subject to density-dependent predation by starfish; but at low
density the threshold for predation is not reached and free
space is always present (Possingham et al., 1994). Coupled models
of oceanic processes of the larval stage and adult benthic stage
were developed (Possingham & Roughgarden, 1990;
Roughgarden et al., 1991). Farrell et al. (1991) showed that the

Fig. 1. The relationship between the density of
manipulated recruits of S. balanoides in June
2002 on shores of North Wales and the density
of surviving adults 2 years later. On both shores,
adult density is positively related with recruit-
ment at low densities, switching to no relation-
ship at moderate densities and a negative
relationship when recruitment is very high.
From Jenkins et al. (2008a).
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supply of larvae was inversely proportional to the strength of
upwelling and that larvae were passively transported offshore to
the oceanic front. This gave rise to models where the larvae
were produced and passively transported to the frontal boundary.
The collapse of upwelling leads to areas of the front colliding with
the shore and giving peaks of recruitment (Roughgarden et al.,
1991). The predictions from models coupling large-scale oceanic
processes that affect the larvae with small-scale benthic dynamics
have led to development of a community model for California
and Oregon (Connolly & Roughgarden, 1998).

Modelling has also been used to examine the factors structur-
ing barnacle populations across Europe (Hyder et al., 1998, 2001;
Svensson et al., 2005). For example, Hyder et al. (2001) applied
open models with space-limited recruitment to large-scale obser-
vations of Chthamalus montagui and other barnacles across
Europe (Jenkins et al., 2001; O’Riordan et al., 2004). Modelling
demonstrated differences between the processes structuring bar-
nacle populations in the Atlantic and Mediterranean (Hyder
et al., 2001). The models showed the amount of free space varied
within a year, but the pattern differed between sites in the Atlantic
and Mediterranean (Hyder et al., 2001). Modelled free space
represented the balance between space-filling and space-creating
processes, which may reflect differences in the timing of processes
in the Atlantic (mortality due to storms and low growth in winter)
and Mediterranean (mortality due to desiccation and low growth
in summer) (Hyder et al., 2001). Genetic differentiation has been
found between Mediterranean and Atlantic C. montagui (Dando
& Southward, 1980; Pannacciulli et al., 1997), which could be dri-
ven by neutral processes resulting from hydrographic separation
and/or variation in timing of selective pressures. This combin-
ation of modelling and experimental/empirical work has led to
major advances in understanding of the processes driving open
populations for which barnacles have proved an excellent test
system.

Zonation along environmental gradients

Connell’s (1961a) classical experiment on competition between
fast-growing mid and low shore Semibalanus balanoides and
slower-growing high shore Chthamalus montagui at Millport
showed the importance of biological interactions along environ-
mental gradients in setting lower limits of zonation of individual
species (for similar work in New Zealand see Luckens, 1970,
1975a, 1975b). This idea was reinforced through observations of
predation setting lower limits (Connell, 1961b, 1970; Paine,
1971, 1974; Paine et al., 1985). In contrast laboratory simulations,
early transplant/environment modification experiments (Luckens,
1970) and field observations of mortality at upper limits led
Connell (1972) to propose that the upper limits of zonation of
species were generally set by the direct effects of physical factors
with lower limits being set by biological interactions. Connell’s
conceptual leap forward on understanding zonation patterns of
species along environmental gradients was to suggest that the
proximate causes of upper and lower limits had to be treated sep-
arately. Subsequent experimental removal and transplant studies,
backed by realistic laboratory tolerance experiments on fucoid
zonation on sheltered shores on both sides of the Atlantic, con-
firmed the role of physical factors setting upper limits
(Schonbeck & Norton, 1978, 1979a, 1979b, 1979c, 1980b) and
biological interactions, particularly competition in setting lower
limits (Lubchenco, 1980; Schonbeck & Norton, 1980a).

Some exceptions have since emerged to Connell’s synthesis.
Low on the shore, upper limits were shown to be set by grazing
on more wave-exposed shores (e.g. Southward & Southward,
1978; Underwood, 1980; Underwood & Jernakoff, 1981;
Boaventura et al., 2002a). On sheltered shores, competition was

shown to set the upper limits of some low and mid-shore fucoids,
as well as lower limits (Hawkins & Hartnoll, 1985, but see com-
ments by Underwood, 1991a). Ascophyllum in particular was
shown in removal experiments to exclude both higher shore
Fucus vesiculosus and lower shore Fucus serratus from midshore
plots (Jenkins et al., 1999b, 1999c, 2004); this competitive ability
is because it can grow large via vegetative proliferation and its lon-
gevity rather than fast early growth (Johnson et al., 1998c).
Ultimately the physical stress gradient from low shore to high
shore determines survival, growth and hence competitive per-
formance of algae and sessile invertebrate species. Proximately
upper limits, especially for higher shore species, are set by phys-
ical factors and although generally lower limits are set by bio-
logical interactions, upper limits of mid and low shore species
can also be set by biological interactions such as competition
and grazing. There is no convincing evidence that lower limits
of essentially marine organisms are set directly by too much
emersion – in Pelvetia canaliculata, which rots when transplanted
lower down the shore (Schonbeck & Norton, 1980a; Rugg &
Norton, 1986), a pathogen has been shown to cause mortality
at lower tidal levels.

Competition

Much valuable work has been done on competition amongst
mobile animals, particularly grazing gastropods. Experimental
designs that segregate intra- from interspecific competition are
crucial when understanding interactions between species; such
designs were pioneered by Underwood (e.g. 1978, 1984, 1986,
1988, 1992a) working with his students (e.g. Creese &
Underwood, 1982; Fletcher & Creese, 1985). Intraspecific compe-
tition as expected is often more intense than interspecific compe-
tition (Creese & Underwood, 1982; Ortega, 1985; Boaventura
et al., 2002b), enabling competitively inferior species to persist,
especially if they, like Siphonaria, have access to a resource
untapped by the superior competitor such as algae growing on
Cellana shells (Creese & Underwood, 1982; see comments in
Underwood, 1992a, 1992b). Inter-age class interactions within a
species can also be important, with larger animals impacting
smaller size classes (e.g. Boaventura et al., 2003), probably
through competition for both food and space. The converse has
also been found, with faster growing smaller animals outcompet-
ing larger limpets (Marshall & Keough, 1994). Recently the
potential role of competitive interactions among gastropods in
limiting range expansion and hence determining range limits
has been examined using scurrinid limpets in the south-east
Pacific as a model system. Aguilera et al. (2019b) showed novel
evidence of asymmetric competition between two congeners
potentially limiting range expansion by Scurria viridula.

Whilst competition is clearly important there are emerging
context-dependent caveats. Firstly resources, whether space or
food, need to be in short supply. This can depend very much
on local and mesoscale differences in larval or propagule supply
discussed above. Competitive outcomes can also be modified by
both fluctuating environmental conditions and recruitment –
very common in intertidal systems – leading to co-existence of
species due to absence of the equilibrium conditions theoretically
needed for competitive exclusion. For instance, Connell (1961a)
was able to demonstrate intense competition between barnacle
species because space is highly saturated due to larval retention
by fronts in the Firth of Clyde. Such retention leads to very
high local recruitment compared for example with more disper-
sive coastal environments such as the Isle of Man (Hawkins &
Hartnoll, 1982a). Work elsewhere can lead to different outcomes
(e.g. Gordon & Knights, 2018), especially where space is under-
saturated due to mesoscale recruitment differences (Jenkins
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et al., 2001; Burrows et al., 2010), or to low recruitment including
failure years (Svensson et al., 2005). Further south in the geo-
graphic range of Semibalanus in south-west England, early juven-
ile mortality of the dominant Semibalanus in warm years
probably releases slower growing chthamalids from competition
(Poloczanska et al., 2008). Even where space is apparently under-
saturated, gregarious settlement behaviour can lead to intra-
specific competition (e.g. Gordon & Knights, 2018), whilst maxi-
mizing survival and mating opportunities (Kent et al., 2003).

Predation and grazing

Pioneering work by Paine (1966), in which the large predator
Pisaster ochraceus was experimentally removed from a mussel-
dominated (Mytilus californianus) shore in Washington State,
led to the keystone predator concept. Paine showed that diversity
of conspicuous fauna declined in the absence of this large preda-
tor. In addition, continuation of this removal experiment for sev-
eral years showed that predation could also set the lower limit of
mussels (Paine, 1974). Paine went on to repeat this experiment in
New Zealand (Paine, 1971) and Chile (Paine et al., 1985), showing
that in biogeographic settings where large starfish were prevalent
(Stichaster australis in New Zealand and Heliaster helianthus in
Chile) and mussels were the dominant space occupier, that a
major ‘keystone’ predator could have a disproportionate effect
on the diversity and distribution of species (Paine, 1969).

Ahead of these experiments, removals of patellid limpets in
large squares or strips by Jones (1946, 1948) on the Isle of Man
showed that the control of fucoid algal vegetation on moderately
exposed rocky shores was by limpet grazing, not by wave action as
previously assumed (see also Conway, 1946, for work in the Firth
of Clyde). Although some of the work was published in Nature,
the remainder of the more detailed follow-up work on the Isle
of Man was largely published in local journals (Jones, 1948;
Lodge, 1948; Burrows & Lodge, 1950; Southward, 1956).
Southward (1964) summarized this work in a chapter for a con-
ference organized by the British Ecological Society. The import-
ance of limpet grazing was starkly confirmed by the toxic
effects of first-generation dispersants used to clean up the
Torrey Canyon oil spill in 1967 (Nelson-Smith, 1968; Smith,
1968). This was one of the first spills from the newer generation
of super-tankers that ran onto reefs off the west Cornish coast.
Vast amounts of ‘detergents’, a euphemism for a mix of surfac-
tant, organic solvent and stabilizer, were applied to the crude
oil that came ashore. A total of 10,000 tons of dispersant were
applied to ∼14,000 tons of oil that came ashore in Cornwall
(Smith, 1968). This led to vast kills of limpets and other grazers
leading to an immediate bloom of green algae, followed by
fucoids, which even occurred on some of the most exposed shores
in Cornwall such as outside Sennen Cove (Southward &
Southward, 1978). Recovery of these treated shores took between
10–15 years (Southward & Southward, 1978; Hawkins &
Southward, 1992; Hawkins et al., 1983, 2017a, 2017b). Those
observations confirmed that grazing, rather than physical factors,
controlled algal vegetation and that limpets can be considered a
keystone grazer on the rocky shores of the north-east Atlantic
(Hawkins & Hartnoll, 1983a).

Starting with removing limpets from strips or patches
(Hawkins, 1981a), a more nuanced approach using limpet exclu-
sion fences (Hawkins, 1981b) was then adopted by the next gen-
eration of researchers on the Isle of Man (reviewed in Hawkins &
Hartnoll, 1983a). This teased out the interactions between lim-
pets, barnacles and fucoids (Hawkins & Hartnoll, 1982b, 1983b;
Hawkins, 1983), and the role of recruitment fluctuations
(Hawkins & Hartnoll, 1982a) in generating patchiness on exposed
shores (Hawkins & Hartnoll, 1983a; Hartnoll & Hawkins, 1985).

Some of this work was correctly criticized for lack of replication
(Chapman, 1995). Subsequent studies used extensive replication
over replicated patches, seasons and shores and on large geo-
graphic scales (Arrontes et al., 2004; Jenkins et al., 2005;
Coleman et al., 2006) confirmed the importance of limpet grazing
in controlling algal vegetation, especially fucoids, in more north-
erly latitudes. Further north in Europe (i.e. the Isle of Man) the
response to limpet removal was highly deterministic, but even
in southern Britain a greater stochastic element was apparent
(Jenkins et al., 2005). Follow-up work comparing the factors
determining fucoid recruitment in Portugal vs the British Isles
showed that interactions between reproductive output, propagule
supply and physical factors, particularly desiccation and grazing,
influenced fucoid recruitment (Ferreira et al., 2015). In the
south of Portugal, fucoid cover and biomass is reduced, propagule
supply is less and physical factors reduce early growth and recruit-
ment; whereas in the north, in less stressful conditions with ample
propagule supply, grazing has a prominent regulatory role
(Ferreira et al., 2014).

Spatial mapping of mosaics using geo-statistical tools (Johnson
et al., 1997), probabilistic individual-based modelling (Johnson
et al., 1998a) and approaches using cellular automata (Burrows
& Hawkins, 1998) have built on the underlying experiments
(summarized above and in Hawkins et al., 1992) enabling simu-
lation of the processes involved generating patchy mosaics on
moderately exposed rocky shores. Jonsson et al. (2006), using a
combination of experiments and modelling on artificial break-
waters, showed conclusively that limpets prevent establishment
of fucoids, but wave action determines their persistence once
established.

The keystone concept has received some criticism (Mills et al.,
1993; Power et al., 1996). It is clearly context-dependent: appro-
priate large-bodied predatory and grazing species have to be pre-
sent to be able to perform this role (i.e. large starfish in the
Indo-Pacific; large limpets in the north-east Atlantic) and there
have to be dominant space occupiers such as mussels or fucoid
canopy-forming algae that are controlled by an important con-
sumer (Power et al., 1996).

Disturbance and succession

Rocky shores are naturally disturbed environments. The direct
action of waves and indirect action through scouring as a conse-
quence of movements of sand, gravel, and turning over cobbles
and boulders (Shanks & Wright, 1986) remove biota thereby start-
ing secondary succession (Connell & Slatyer, 1977). Primary suc-
cession can also be initiated by chunks of rock becoming cleaved
away or the placement of new blocks on artificial shores (Hawkins
et al., 1983; Moschella et al., 2005) creating virgin surfaces. In
addition to physical processes, biological disturbance can arise
from grazing, predation, sweeping or whiplash by canopy algae
such as kelps or fucoids (Velimirov & Griffiths, 1979; Hawkins,
1983), and even intense intraspecific competition leading to hum-
mocking of barnacles (Barnes & Powell, 1950). All these biological
processes can lead to space being made available for secondary or
even tertiary succession (on top of existing biota). This is particu-
larly the case when grazing is relaxed, leading to algal colonization
(Hawkins, 1981b). Grazing pressure can keep an invisible lawn of
biofilm on apparently bare rock and on barnacles (Hill &
Hawkins, 1991).

It is, therefore, not surprising that empirical studies of disturb-
ance and succession have been made on rocky shores, and this
work has led to conceptual advances (Connell & Slatyer, 1977;
Sousa, 1979a, 1979b, 1984a, 1984b). Connell & Slatyer (1977)
proposed three models of succession: classical facilitation where
early stages are essential for progression to later arriving species;
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inhibition where early or mid-successional species delayed pro-
gression to later arriving species; and the tolerance model
(which nowadays would be termed a neutral model) where
there are no positive or negative interactions, but species eventu-
ally came to predominate because of life history characteristics
such as longevity.

In the literature, there are many examples of facilitation and
inhibition (Menge, 1995), although less for the tolerance model
(but see Farrell, 1991). Facilitation can be particularly important
during primary succession (Wahl, 1989), when microbial films
condition the surface. There is, however, some evidence of inhib-
ition even in microbial films (Wieczorek et al., 1995). Inhibition
commonly occurs when early colonizing macro-algae such as
ephemeral greens and browns come to dominate rocks. Sousa
(1979a) determined the importance of grazing in breaking dom-
inance by intermediate stages thereby breaking inhibition to allow
succession to proceed. The paucity of evidence for the tolerance
model may simply be because studies have not been run for
long enough (Jenkins & Uyà, 2016, for consideration of the tem-
poral scale of manipulative experiments). In long-term experi-
ments on Ascophyllum-dominated sheltered shores of the
north-east Atlantic examples of the tolerance model may be
found. Clearance areas were initially dominated by Fucus serratus
and F. vesiculosus. However, slow recolonization over 10–20 years
by A. nodosum occurred through its ability to grow up through an
overlying canopy of shorter-lived competitors that led toward its
return to dominance, maintained by proliferating vegetatively in
long-lived clumps (Jenkins et al., 1999b, 2004; Ingolfsson &
Hawkins, 2008). These models are more classifications than a pre-
dictive framework, with Hawkins & Hartnoll (1983b) observing
that some successional sequences can involve more than one
model.

Benedetti-Cecchi (2000a) revisited the successional models of
Connell & Slatyer (1977). He used a combination of traits from
knowledge of natural history and outcomes of past experiments
on the importance of positive and negative interactions to turn
Connell & Slatyer’s (1977) models of succession into predictive,
but still qualitative models of succession (Figure 2). This study
shows how positive indirect interactions may facilitate the estab-
lishment of species that characterize early successional stages

later in succession, challenging the idea of succession as a direc-
tional sequence of species replacements.

Connell & Slatyer (1977) stated that ‘succession never stops’
and if the broadest definition of succession as a sequence of col-
onization following a disturbance event is adopted, then this is
certainly the case, especially on rocky shores where both physical
and biological disturbance is prevalent. The intermediate disturb-
ance hypothesis (Connell, 1978) has been extensively explored on
rocky shores. Sousa (1979b) worked on boulders of different sizes
and their likelihood of turning over from wave action, showing
middle-sized boulders experiencing intermediate disturbance
had the highest algae diversity. Lubchenco (1978) examined bio-
logical disturbance by grazing littorinids in rockpools, finding the
highest diversity of algae occurred in pools with intermediate
levels of grazing. Intensity of wave action has also been shown
to yield a parabolic pattern of species richness, which is lowest
at very low disturbance sheltered shores and at exposed shores
with very high levels of wave force (Blamey & Branch, 2009).

Succession following disturbance is ultimately driven by a
combination of physical and biological processes. For example,
the intensity of biological interactions may vary in relation to
the physical attributes of the disturbed patches. Such interactions
were identified by Sousa (1984a) in an elegant experiment in
which the removal of gastropod grazers resulted in different pat-
terns of succession depending on the size of the experimental
clearings in mussel beds. Small clearings (25 × 25 cm) were entirely
dominated by grazing-resistant encrusting coralline algae. In con-
trast, large clearings (50 × 50 cm) became colonized by fleshy
macroalgae in the central part, with encrusting corallines develop-
ing only along the borders. Complementary measurements indi-
cated that herbivores were more abundant and foraged mostly
along the margins of large patches, whereas they could explore all
the available space in small clearings. These patterns were likely a
response of grazers to predators and to desiccation stress, both of
which were mitigated by the intact mussel assemblage surrounding
the disturbed patches. Thus, the central part of large patches offered
a refuge from grazing to palatable algae, whereas only
grazing-resistant species could survive in areas under the reach of
herbivores. Patchy mosaics resulting from local escapes from graz-
ing (tertiary succession) can also lead to higher diversity intertidal
landscapes (Hawkins & Hartnoll, 1983a).

Positive interactions

Positive interactions between species have been known for a long
time, especially in the intertidal zone (Bertness & Leonard, 1997;
Bertness et al., 1999). These can involve habitat provision or
amelioration of conditions for other species during succession fol-
lowing disturbance or steady-state conditions. Some of the first
experimental work identifying positive interactions was under-
taken by Hatton (1938) in France (for reviews, see Connell,
1972; Hawkins et al., 2016). Hatton noted that higher on the
shore positive interactions were important, whilst lower down
negative interactions such as competition were more prevalent.

More recently, the term ‘facilitation’ borrowed from succes-
sional studies has been brought into ecological mainstream stud-
ies with work on both rocky shores (Silliman et al., 2011) and
saltmarshes (Bertness & Shumway, 1993; Bertness & Callaway,
1994; Shumway & Bertness, 1994). This was formalized by
Bertness & Callaway (1994) in the stress-gradient hypothesis
(Figure 3).

In physically stressed environments, both intra- and interspecific
interactions can increase survival and influence demographic pro-
cesses (Menge & Sutherland, 1987). In areas with intense biological
interactions, co-defences can be important in providing protection.
Examples from rocky shores include work in the physically stressed

Fig. 2. Network of species interactions shaping rocky shores assemblages at late
stages of succession on a Mediterranean rocky shore. Strong competition for space
between late successional species (fleshy algae and barnacles) and limpets reduces
grazing pressure in the mature assemblage, indirectly facilitating the persistence of
early colonizers (filamentous algae) at late stages of succession. Continuous (dashed)
lines indicate direct (indirect) interactions. (+) positive interaction; (−) negative inter-
action. Redrawn from Benedetti-Cecchi (2000a).
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low-humidity environments of Patagonia (Silliman et al., 2011) that
emphasized the importance of positive interactions.

Mid-shore canopy-forming algae such as A. nodosum enable
species to thrive higher up the shore, especially turf-forming
algae (Jenkins et al., 1999b, 2004, 2005; Ingólfsson & Hawkins,
2008; Pocklington et al., 2018). These tend to die when the can-
opy is removed. The canopy also facilitates persistence of algal
turfs that trap sand and inhibit limpet grazing (Airoldi &
Hawkins, 2007). Once the canopy is removed, the turf declines
and limpet numbers increase (Jenkins et al., 2004).

Some species can have both positive and negative effects on
other species, depending on environmental context and life his-
tory stage (Bulleri et al., 2018a). Canopy algae high on sheltered
shores can enhance barnacle recruitment, presumably by reducing
mortality of recently settled juveniles (Hawkins, 1983). In contrast
on more exposed shores, clumps of fucoids can reduce numbers
of settling cyprids leading to reduced recruitment (Hawkins,
1983). Lower on sheltered shores, F. serratus prevents settlement
by sweeping (Hawkins, 1983; Jenkins et al., 1999a).

Whilst limpets can prevent establishment of fucoids in the
north-east Atlantic, once a patch becomes established, juvenile
Patella vulgata move under these patches along with adults
(Hawkins & Hartnoll, 1983b; Hartnoll & Hawkins, 1985). Not
only do the limpets benefit from shelter (amelioration of tide-out
temperatures and relative humidity), but recent observations and
work using isotopes (Davies et al., 2007; Notman et al., 2016)
have confirmed that the limpets also eat the fucoids, confirming
earlier work (Jones, 1948). Thus, a complex mix of positive and
negative interactions plus chance recruitment events help generate
and maintain patchiness on moderately exposed shores in the
north-east Atlantic (Hawkins et al., 1992). Similar processes
have been shown in Australia (Underwood et al., 1983) and on
the Pacific Coast of North America (Dungan, 1986).

In recent years, the concept of facilitation cascades has
emerged (Stachowicz, 2001; Silliman & Bertness, 2002), where a
species provides habitat for another species that in turn provides
habitat for a further species and so on (Stachowicz, 2001). Such
cascades are typical of large macroalgae on rocky shores, but
have also been described for sessile invertebrates (Peterson &
Heck, 2001; Harley, 2006; Zhang & Silliman, 2019).

Alternative stable states

Although the earliest work on alternative stable states focused on
lakes and ponds as model systems (Scheffer et al., 1993; Carpenter

et al., 2011; Hawkins et al., 2015), some work has been done in
subtidal and intertidal rocky systems. In the shallow subtidal,
comparisons between two physically comparable adjacent islands
on the west coast of South Africa by Barkai & McQuaid (1988) led
them to argue that their communities existed in alternative stable
states, one maintained by the predatory effects of rock lobsters
that eliminate many prey species and promote kelp growth
because of the absence of grazers, and the other by an unusual
predator–prey reversal in which whelks consume and prevent col-
onization by lobsters. Sea urchin barrens prompted by overfishing
(Steneck et al., 2003) or driven by climate change (Ling et al.,
2009) have also been considered an alternative stable state. In
Cystoseira-dominated shallow-water systems in the Mediterranean,
storm-driven disturbances, the frequency of which are likely to
have increased due to climate change, have been demonstrated to
result in alternative stable states (Benedetti-Cecchi et al., 2015).
Experiments and models have shown how this system followed non-
linear dynamics and exhibited hysteresis (Figure 4), displaying a tip-
ping point at about 70–75% of canopy loss, beyond which the
canopy-dominated communities gave way to those dominated by
algal turfs (Benedetti-Cecchi et al., 2015; Rindi et al., 2017). This
experimental work was used to probe statistical early warning sig-
nals of an approaching tipping point, such as rising variance and
autocorrelation of response variables. Early warning signals of
approaching regime shifts have been studied mostly under con-
trolled laboratory conditions or using whole-ecosystem (yet
pseudo-replicated) experiments (Carpenter et al., 2011). Rocky
shores have proved a tractable system to extend these tests under
real world conditions, using properly replicated experiments.

There is growing evidence to suggest that urbanization of
coasts, especially increased silt-load can also lead to domination
by turfs, both in subtidal and intertidal habitats (Benedetti-
Cecchi et al., 2001; Airoldi, 2003; Gorgula & Connell, 2004).
Using long-term observational data and path analysis, Bulleri

Fig. 3. Model of occurrence of positive interactions in natural communities. Positive
interactions are predicted to be rare under mild physical conditions and consumer
pressure. Associational defences under high consumer pressure, and neighbourhood
habitat amelioration under high physical stress lead to a higher frequency of positive
interactions. Redrawn from Bertness & Callaway (1994).

Fig. 4. How alternative stable states or extreme hysteresis can lead to slow or no
recovery. Whilst a pulse disturbance can initiate succession or push a system to
another state, press disturbance, repeated frequent pulse disturbance, or chronic
pollution such as eutrophication or sedimentation can keep a system in another
state unless they cease (Benedetti-Cecchi et al., 2019).
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et al. (2018b) showed how wave action and anthropogenic dis-
turbance may mediate the biological interactions that regulate
regime shifts on rocky reefs in the north-west Mediterranean,
including canopy-turf interactions and grazing by sea urchins.
Indeed, algal canopies, turfs and barrens produced by sea urchins
can form complex mosaics on subtidal rocky reefs, suggesting that
these assemblages may be organized around three alternative
states. Although the interactions that control the shift from one
habitat type to another are reasonably well understood, the con-
ditions maintaining the balance among the three putative alterna-
tive states have not been fully explored. In particular, improving
knowledge of the reinforcing feedback mechanisms that maintain
each habitat state is an important area for further research to
understand the dynamics of algal-dominated rocky reefs globally.

Communities dominated by A. nodosum canopies in the mid-
intertidal of the north Atlantic can be very slow to recover, taking
over 20 years in Europe following experimental removal (Burrows,
1947; Jenkins et al., 1999b, 2004; Cervin et al., 2005; Ingólfsson &
Hawkins, 2008; Pocklington et al., 2018), or highly destructive
harvesting (Boaden & Dring, 1980). Experimental work in
North America has asserted that ice-scouring leading to loss of
A. nodosum can lead to an alternative stable state – mussels
(Petraitis & Dudgeon, 1999; Dudgeon & Petraitis, 2005). This
interpretation has been challenged by other workers on New
England shores (Bertness et al., 2002). More recently, Menge
et al. (2017) revisited sites experimentally cleared in 1974 and
showed that Ascophyllum had not as yet recovered 39 years
later, the cleared area being dominated by Fucus spp. They con-
cluded that conditions for an alternative state were in operation.
On European shores the limited recovery following A. nodosum
removal after 20 years has been interpreted as very slow succes-
sion, with domination during mid-succession by other fucoids
such as F. serratus and F. vesiculosus for some years. There are
intrinsic differences in the biota on shores in New England and
the British Isles. Most of the canopy species are the same (A.
nodosum, F. vesiculosus, but with F. serratus largely absent except
in Nova Scotia) and S. balanoides is the dominant barnacle in
colder regions. However, due to differential post-glacial coloniza-
tion processes, grazing by patellid limpets is absent and Littorina
littorea is probably an invasive species in New England (Jenkins
et al., 2008b). On the shores studied by Petraitis & Dudgeon
(1999), mussels dominated the alternative state, but they were
generally absent from A. nodosum-dominated shores in north-
west Europe. Context may play a role in whether alternative stable
states occur or not. Such apparently stable states might still be an
outcome of extremely slow succession, especially given the gener-
ally low recruitment of A. nodosum in some systems (Åberg &
Pavia, 1997). Very strong inhibition may, therefore, occur by spe-
cies present in intermediate successional stages. Given the esti-
mated lifespan of individual A. nodosum of over 100 years, it is
not surprising that succession is slow given that their dominance
is maintained by vegetative proliferation of clump-forming gen-
etic individuals (Åberg, 1996).

Biodiversity and ecosystem functioning

The realization that biodiversity could drive the functioning of
ecosystems has been a major topic of interest in mainstream ecol-
ogy for the last three decades (Loreau et al., 2002), having been
explored in terrestrial (Hector et al., 1999; Loreau et al., 2001),
freshwater (Giller et al., 2004; Woodward, 2009) and marine eco-
systems (Solan et al., 2012). Most work in marine ecosystems has
used synthetic assemblages of species from soft sediment commu-
nities in mesocosms (Emmerson et al., 2001; Solan et al., 2008),
strongly linking diversity to ecosystem processes such as nutrient
remineralization (Emmerson et al., 2001). Some pioneering work

in the field on rocky shores explored the influence of biodiversity
on primary production, showing strong idiosyncratic effects of
individual dominant species such as Patella (O’Connor &
Crowe, 2005). Rockpools have been used as semi-enclosed meso-
cosms in the field enabling ecosystem processes such as primary
productivity to be measured as a response variable (Noël et al.,
2009), whilst manipulating diversity in the pool at the species
or functional group level (Griffin et al., 2010).

Rocky shore organisms have also been taken into the labora-
tory and experimentally assembled in mesocosms mimicking
rock pools. Griffin et al. (2008) investigated the interaction of
diversity and density in assemblages of predatory crabs. They
showed the importance of considering density in such experimen-
tal work; predators were shown to occupy distinct fundamental
niches but loss of predator diversity impacted ecosystem processes
only at high predator densities. Using a similar mesocosm
approach, the influence of spatial heterogeneity on the role of bio-
diversity was shown in assemblages of grazing gastropods (Griffin
et al., 2010). More complex mesocosms have been used to inves-
tigate the effect of predator diversity on subtidal food webs, show-
ing that changes in the diversity of predatory fish can cascade to
lower trophic levels by reducing grazer abundance, which in turn
translates to different levels of increases in algal biomass (Bruno &
O’Connor, 2005). Experiments by O’Connor et al. (2013) com-
pared the influence of predator loss and independent manipula-
tions of lower trophic level grazers on algal composition and
biomass on exposed and sheltered shores. Cascading negative
effects of predator loss were identified on grazers and indirect
effects on primary producers, mediated by grazer identity.

The diversity of functional groups within a habitat has been
suggested to be important in determining the invasibility of
assemblages (Arenas et al., 2006). Using mosaics of tiles in rock
pools with different diversity and assemblage compositions,
Arenas et al. (2006) showed that invasibility may be facilitated
by the disappearance of whole functional groups, which is
increasingly likely with human activity.

Whilst biodiversity has been demonstrated to have a role in
shaping ecosystem processes, this has mainly been shown in
closed systems – often artificially, such as in mesocosms. More
attention has focused on biodiversity at the numbers and types
of species level. In open highly fluid systems typical of most mar-
ine ecosystems, especially rocky shores, habitat patch diversity
may be more important (Giller et al., 2004; Hawkins, 2004).
This will influence the balance of primary producers, consumers
such as filter feeders, predators and mosaics of hard substrata
dominated by production processes and soft sediments as the pri-
mary site for remineralization and carbon sequestration. There
will also be export and import of material between these habitat
patches. Alsterberg et al. (2017) demonstrated this in sedimentary
systems. Recent work on rocky shores has also emphasized the
strong context-dependency of biodiversity-ecosystem functioning
relationships (Mrowicki et al., 2015), reminding us of the import-
ance of environmental gradients (summarized in Raffaelli &
Hawkins, 1996) in setting patterns and ultimately determining
potential composition of biodiversity, outcomes of interactions
and hence processes at the community and ecosystem level
(Hawkins et al., 2019b, 2019c).

Bottom-up forcing and top-down control

The limnological and oceanographic research communities have
long pondered the importance of bottom-up forcing by physico-
chemical processes relative to top-down control by higher trophic
levels. These concepts can be best explored in closed systems such
as small lakes and ponds where bottom-up nutrients and top pre-
dators can both be manipulated at the scale of the whole
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ecosystem in very similar adjacent lakes, ponds or large meso-
cosms (Scheffer et al., 1993; Moss et al., 1994; Williams et al.,
2002).

These concepts of bottom-up forcing have been explored in
intertidal ecosystems, especially those strongly influenced by
nutrient-rich upwelling on the Pacific coasts of North America
(Menge, 2000a; Menge & Menge, 2013; Fenberg & Menge,
2019), New Zealand (Menge et al., 1999), Chile (Wieters et al.,
2003; Wieters, 2005; Reddin et al., 2015), and South Africa
from the Atlantic to the Indian Ocean (Bustamante et al.,
1995a; Bustamante & Branch, 1996; McQuaid & Lindsay, 2000).
Bottom-up forcing by greater nutrient supply can lead to greater
productivity by both microbial biofilms and macro-algae on the
shore, leading to faster growth and larger sizes of grazers and
greater densities of filter feeders (Bustamante et al., 1995a,
1995b). Similarly, rich inshore phytoplankton can enhance
growth of sessile filter feeders (Bertness et al., 1991; Xavier
et al., 2007), especially if it proliferates during upwelling events
and is then transported onshore by downwelling, coined the inter-
mittent upwelling hypothesis (Menge & Menge, 2013). This in
turn can support larger numbers of predatory animals. Larval
supply can also be viewed as a form of bottom-up forcing as it
intensifies both intraspecific (Jenkins et al., 2008a) and interspe-
cific interactions (e.g. competition in high recruitment areas such
as the Firth of Clyde, Connell, 1961a, 1961b) as well as providing
more food for predators.

Using both comparative studies and field experiments,
research on South African west-coast islands that are occupied
by dense colonies of seabirds has shown that guano boosts nutri-
ent levels in the surrounding seawater (Bosman et al., 1986). This
elevates intertidal algal growth and infaunal abundance, thus
respectively increasing food supplies for herbivores and waders
such as turnstones. As a consequence of enhanced algal biomass,
growth rates and sizes of limpets rise substantially. However, oys-
tercatchers reach greater abundance on the islands because they
are protected there from predators, and they exert a strong influ-
ence on limpet abundance, micro-habitat occupation and grazing;
and smaller waders deplete the infauna of algal mats on a seasonal
basis determined by their migration patterns (Hockey &
Underhill, 1984; Branch, 1985). Bottom-up nutrient effects are
thus countered to some extent by top-down predation.

Conversely the role of top-down control by predators (Paine,
1966) and grazers (Jones, 1946, 1948) has been long known in
intertidal systems with some of the first demonstrations of how
lower trophic levels can be controlled. If bottom-up forcing is
great then lower trophic levels can escape or swamp top-down
control, especially if predation is constrained by water flow or
wave action (Leonard et al., 1998); but then in species like barna-
cles which hummock, intense intraspecific competition can lead
to mass mortality (Barnes & Powell, 1950).

In many cases the relative importance of top-down control and
bottom-up forcing is a balance, varying from place to place with
mesoscale hydrography and coastal morphology (Menge, 2000a).
It can also change temporally with season in temperate zones, or
with intensity of upwelling in boundary current dominated sys-
tems. In the plankton in temperate regions physico-chemical fac-
tors control primary production in the winter (low light, much
turbulence even though nutrients are not limiting). With
increased light in spring and a less turbulent water column due
to stratification, phytoplankton can bloom, this being ended by
a combination of lack of nutrients coupled with grazing by cope-
pods that lag the phytoplankton bloom. Similar processes have
been shown in cold-temperate intertidal rocky shores on the
Isle of Man that are driven by microbial films (Thompson
et al., 2004). In the winter light is limiting but in late winter/
early spring as light increases there is an increase in biomass as

shown by chlorophyll. Grazing activity is driven by temperature
and is still low in February/March at the time of coldest sea tem-
peratures enabling a window of opportunity for benthic diatoms
to flourish. Later in the year this bloom is halted by increased
grazing as well as light and desiccation stress, leading to cyanobac-
terial domination in the summer. Parallel experiments by
Thompson et al. (2004) showed the primacy of grazing and sea-
sonal summer stresses over nutrient forcing, suggesting both
bottom-up forcing, top-down control and what they termed lat-
eral stresses were important in this simple system (see Figure 5).
Thus, there is interplay between abiotic factors (some bottom-up,
some modulating stresses) and biological control in this highly
seasonal system.

Experimental work in rock pools (Masterson et al., 2008) has
shown the interactive effects of top-down control by grazers and
bottom-up nutrient enrichment on early successional algal assem-
blages following disturbance, with composition, cover and com-
munity productivity being used as response variables. Negative
effects of grazing tended to override positive effects of nutrient-
forcing, except at peak algal growth when top-down control was
swamped. Interestingly, nutrient levels had an important influ-
ence on the identity of dominant macroalgae, leading to a mis-
match between effect estimates based on cover and those based
on productivity. While loss of grazers under ambient nutrient
conditions led to high cover estimates (mainly of red algae such
as Ceramium) but little enhancement of productivity, under ele-
vated nutrients ephemeral green algae were favoured leading to
a three-fold increase in productivity.

Overview and synthesis

Concepts and experiments

The above examples show how important experiments have been
in understanding how patterns on rocky shores are shaped by
processes (see various chapters in Hawkins et al., 2019a), but
also, perhaps more importantly, how rocky shore experiments
have contributed to the ecological mainstream across a range of
concepts. The papers by Menge & Sutherland (1976, 1987) per-
haps epitomize the link between theory and empirical experimen-
tation, taken further forward by Menge (2000a). Menge &
Sutherland (1976) synthesized how environmental gradients of
tidal elevation and exposure to wave action influenced the out-
comes of interactions, especially the respective roles of competi-
tion, predation and what they at the time called temporal
heterogeneity (in essence what now would be called disturbance).
This synthesis was re-visited in Menge & Sutherland (1987), who
clarified the role of disturbance (perhaps prompted by the work
of Sousa, 1984b) and considered the importance of recruitment
regimes as the importance of supply-side processes re-surfaced
in the 1980s (Underwood & Fairweather, 1989). Menge (2000a)
then considered how top-down control and bottom-up forcing
could be incorporated to enhance understanding. He emphasized
how environmental context on various spatial and temporal scales
can influence how shore communities are structured – particu-
larly by mesoscale nearshore oceanographic features such as
upwelling influencing both productivity (Bustamante et al.,
1995b; Wieters et al., 2003; Xavier et al., 2007) and larval delivery
(Pineda, 1991).

As Menge (2000a) pointed out: theory helps ecologists rise
above a morass of local and idiosyncratic natural history studies
enabling a predictive framework and some generalization. At the
very least theory provides the concepts and vocabulary to formulate
hypotheses and interpret experimental results. However, papers
emphasizing the contextual nature of many ecological processes
(Crowe et al., 2011; O’Connor & Donohue, 2013) are, perhaps, a
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warning about not overgeneralizing. Good natural history is essen-
tial in experimental ecology (Hawkins et al., 2016): it is often the
first phase in exploring patterns by observation and getting to
know traits of species. It helps stratify surveys and experimental
designs and minimize variance influencing factors being tested
experimentally and can help get rid of co-variance. Good natural
history leads to more elegant experimentation; just as good physi-
ology depends on expertise in morphology and anatomy.

Approach and methodology

The most important development in the last 30 years has been
better experimental designs matched with appropriate statistical
analyses in a formal hypothesis-testing framework. The seminal
work of Hurlbert (1984) on pseudo-replication made ecological
studies more demanding and forced the ecological community
to think more carefully about the nature and the design of eco-
logical studies. Considerable progress has been made in this dir-
ection and for this Underwood can take much of the credit
(Underwood, 1978, 1981; Underwood & Chapman, 1985, 1992).
Underwood and Chapman have educated young experimental
ecologists worldwide, calling for more rigour and logic in the
way experiments are designed, conducted, analysed and inter-
preted. Underwood’s work on the scientific method has made
Popperian falsification widely accessible, defining an operative
framework whereby observations, theories (models), hypotheses
(predictions) and experiments are logically connected
(Underwood, 1981, 1997; Underwood & Denley, 1984). The

framework offers a decision-making tool to arbitrate among alter-
native explanations and to eradicate false models, contributing to
pursuing values of objectivity when interpreting the outcome of
ecological experiments and observational studies. By emphasizing
the cyclical nature of observations, models, hypotheses and
experiments, the approach advocated by Underwood has dis-
closed the complexity of rocky shores in an unprecedented way,
documenting variation in the structure of assemblages over mul-
tiple scales in space and time and challenging the assumed gener-
ality of many ecological processes. This work has spilled beyond
the boundaries of rocky shore ecology and has influenced the
work of peers in other fields as well. It has also stimulated better
sampling designs to assess ecological impacts through
beyond-BACI (Before-After/Control-Impact) sampling designs
(Underwood, 1991b, 1992b, 1994). The Underwoodian approach
has demonstrated the value of looking beyond the most obvious
explanations, showing the power of disproving alternative models
to break paradigms, eradicate myths and disclose the unexpected.

Focus on rigorous experimental design has allowed interac-
tions between multiple factors to be disentangled plus encouraged
hierarchical designs that test for generality over spatial scales (e.g.
Coleman et al., 2006). Ease of testing multivariate data, for
example, packages such as PRIMER with the PERMANOVA
extension (Anderson et al., 2008), and free R software (R Core
Team, 2019) have led to much more complex and effective statis-
tical analyses. Nevertheless, increasing availability of libraries and
functions to perform complex analyses may also lead to mistakes
and abuse of statistics. Only the judicious choice and correct use

Fig. 5. Bottom-up forcing and top-down control of microbial
films on rocky shores in the north-east Atlantic: (a)
Regulation of the balance between producers (photosyn-
thetic microbiota) and consumers (grazers) in the rocky
intertidal during summer and winter. The positive (+) and
negative (−) lateral effects of contrasting physical factors
on bottom-up and top-down control of trophic interactions
are illustrated. Strong effects are shown as solid lines,
weak effects as dashed lines. (b) Conceptual model incorpor-
ating the role of physical stresses operating laterally at all
trophic levels (sideways-facing arrows) together with
bottom-up forcing (physical and chemical limiting factors;
upward arrows) and top-down control (predation and graz-
ing; downward arrows) in regulating community structure
on temperate rocky shores (From Thompson et al., 2004).
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of well understood methodologies will guarantee progress and
ensure that the ecological community can take full advantage of
the increasing availability of open statistical software.

New technological approaches in the last two decades such as
digital photography, remote sensing, better and cheaper GPS, and
online identification resources, have greatly increased the scope of
what can be done between tides. Digital photography has revolu-
tionized non-destructive sampling enabling much greater sample
sizes, and faster processing of acquired images back in the more
clement environment of the laboratory. Cheap and robust under-
water cameras can provide insights into tide-in conditions, espe-
cially presence and activities of mobile predators (Silva et al.,
2008; Harasti et al., 2014). In situ sensors and data loggers can
characterize the environment, especially temperatures, experi-
enced at fine temporal and spatial scales over long periods and
help better define environmental gradients and micro-scale
mosaics of conditions (Lima & Wethey, 2009; Seabra et al.,
2011). Thus, the context of experimental manipulations can be
much better described. Hard-to-access areas have become more
accessible through the use of remote sensing technologies such
as satellites and aerial photography using drones (Guichard
et al., 2000; Brodie et al., 2018; Gomes et al., 2018; Rosenthal
et al., 2018). The ability to collect large numbers of images over
a wide area has enabled assessments of species distribution and
temporal and spatial fluctuations, such as examining distribution
patterns of mussels in Portugal (Gomes et al., 2018) and investi-
gating changes in kelp forests over time on a global scale
(Rosenthal et al., 2018). Incorporating remote sensing techniques
into experimental design has applications for investigating
large-scale impacts of disturbance on rocky shores, such as com-
mercial macroalgal harvesting (Bennion et al., 2019), oil spills (see
Gilfillan et al., 1995; Mishra et al., 2012 for examples on coastal
marshes) and earthquakes (Schiel et al., 2019b).

Ease of access to rocky shores has made them amenable to citizen
science, where volunteers carry out scientific tasks (Delaney et al.,
2008; Dickinson et al., 2012; Vye et al., 2020) such as sample collec-
tion, processing and analysis. This is not a new concept, with exam-
ples of bird surveys that have been done by citizen scientists for over
100 years (Silvertown, 2009). This approach is becoming more com-
mon in marine and coastal environments (Hughes et al., 2014;
Cigliano & Ballard, 2017) and is increasingly being used to support
policy and management (Hyder et al., 2015; Townhill & Hyder,
2017). For rocky shores, most examples relate to descriptive observa-
tions or monitoring of biodiversity (Delaney et al., 2008; Vye et al.,
2020), but more recently experimental approaches (e.g. www.captur-
ingourcoast.co.uk) and internet-based citizen science (e.g. www.zoo-
niverse.org; Newman et al., 2012) have become more common. With
care this can also include simple experimental procedures such as
re-colonization or clearance experiments at multiple locations with
appropriate controls. Obviously, there are training, ethical, conserva-
tion and quality-control issues to be overcome, but the scope is limit-
less for both describing patterns and understanding processes on
broad spatial scales.

New spectroscopic approaches have also recently revolutio-
nized intertidal ecology. Biomass of photosynthetic biofilms can
be measured non-destructively and over much greater spatial
extents (Murphy et al., 2005, 2006), than with traditional destruc-
tive chlorophyll extraction techniques (Underwood, 1984; Hill &
Hawkins, 1990; Nagarkar & Williams, 1997; Thompson et al.,
1999). They have enabled photosynthesis of macro-algae to be
measured including stress responses (Ferreira et al., 2014).

Technological innovation for the acquisition, storage and dissem-
ination of digital information makes large environmental and bio-
logical datasets increasingly available. This boost from large
datasets opens new opportunities for ecological analysis at unprece-
dented spatial and temporal scales. Recent developments have

encouraged a synthesis between observations and experiments
using hybrid datasets resulting from the combination of observations
and experiments (Benedetti-Cecchi et al., 2018). This approach
leverages the scope of large-scale observational data with the ability
to attribute causality typical of experimental studies. Large datasets
are mostly observational, but distributed experiments across large
spatial scales are becoming increasingly common (see Sanford &
Bertness, 2009, for review). Building on recent developments in time-
series analysis and spatial modelling, hybrid datasets can take advan-
tage of the data generated by distributed experiments embedded in
large-scale observation networks – combining observational and
experimental data provides a promising approach to uncover causal
relations in large-scale phenomena, beyond the limits of causal infer-
ence inherent in observations and beyond the scales encompassed by
individual manipulative experiments.

The development of ever-more sophisticated and well-controlled
mesocosms mimicking rock pools have allowed more controlled fac-
torial experiments to understand how complex interactions between
biodiversity loss and elements of global change (including rising
temperatures, stormier seas, the introduction of non-native species
and eutrophication) modify community composition and ecosystem
functioning. Whilst strictly not field experimentation, such
approaches have stemmed from work on rocky shores in general
and rock pools in particular whether natural or drilled on the
shore (Arrontes & Underwood, 1991; Atalah & Crowe, 2010).
Such mesocosms have been particularly powerful in disentangling
the effects of multiple stressors or environmental context crossed
with biodiversity loss (e.g. O’Connor et al., 2015 – biodiversity loss
and nutrient enrichment; Mrowicki & O’Connor, 2015 – wave action
on warming and biodiversity loss; White et al., 2018 – biodiversity of
predators with warming and nutrient enrichment; Vye et al., 2015 –
impacts of invasive species with water temperature and nutrient
enrichment).

One of the criticisms of experimentation is that it is often done
on very local scales. Broader-scale insights can come from rapid
response to large cataclysmic events whether from major acute pol-
lution incidents such as oil-spills (Southward & Southward, 1978;
Hawkins et al., 2017a, 2017b), nuclear weapon testing lifting
whole atolls (Lebednik, 1973) or major tectonic events, particularly
earthquakes. Earthquakes in Chile (Castilla & Oliva, 1990), Mexico
(Bodin & Klinger, 1986) and New Zealand (Schiel et al., 2019b)
have provided insights into diverse topics such as factors setting
zonation patterns due to uplift or submergence of coastal rock plat-
forms, as well as connectivity during recolonization. Whether from
acute pollution incidents such as oil-spills, outbreaks of pandemic
disease such as COVID 19 reducing tourism and recreational use
of the foreshore, or natural disasters such as earthquakes or tsu-
namis, insights come best when they impact well-studied sites
with previous time-series data, ideally where experimentation has
revealed some of the processes causing patterns. The network of
sites studied by the Southwards for a decade before the Torrey
Canyon oil spill (Southward & Southward, 1978) provided an unin-
tended beyond-BACI design of multiple impacted and un-impacted
areas beyond the influence of the spill – ultimately allowing some
disentangling of the impacts of the spill and the role of climate fluc-
tuations in recovery processes (Hawkins et al., 2017a, 2017b).
Likewise in New Zealand the work at Kaikoura over many years
by Schiel and colleagues will enable some major scientific insights
to be recovered from the wreckage caused by the earthquake (Schiel
et al., 2019b), including the closure of the laboratory at Kaikoura.

Conservation and management of rocky shores in a rapidly
changing world

Understanding from experiments has also contributed to better
conservation and management of rocky shore ecosystems
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(Thompson et al., 2002; Branch et al., 2008) including the use of
rocky shore organisms as indicators of global change and under-
standing interactions with more regional and local scale impacts
(explored in detail in Branch et al., 2008; Hawkins et al.,
2019c). Here we focus mainly on global change, but emphasize
that many of its more pernicious impacts are usually in concert
with regional or local-scale impacts such as overfishing of near-
shore predators (Ling et al., 2009) or over-collection of intertidal
grazers (Borges et al., 2015), sediment and nutrient run-off from
land both from agricultural (Schiel & Howard-Williams, 2016)
and urban sources (Airoldi, 2003), plus habitat loss and fragmen-
tation (Airoldi & Beck, 2007), often as a result of urbanization or
ocean sprawl (Bugnot et al., 2020; Hawkins et al., 2020).

Ecosystem responses to climate change fluctuations
(Southward & Crisp, 1954; Southward, 1967) and subsequent
rapid climate change have been detected using rocky shore indi-
cators (Southward et al., 1995; Hawkins et al., 2003;
Mieszkowska et al., 2006, 2014). Knowledge of species interac-
tions derived from experiments have shown the importance of
modulation of climate warming by biological interactions. Based
on the classical work of Connell (1961a), coupled with a space-
limited model (Roughgarden et al., 1985), modelling has shown
how responses of cold-water and warm-water species of barnacles
to climate were mediated by competition (Poloczanska et al.,
2008). In warmer years, the warm-water Chthamalus spp. pros-
pered as they were released from competition with faster growing
northern species. Predictive models using climate change scen-
arios only worked well when competition in addition to physical
drivers was built into the models. Experiments have been used to
explore how competitive interactions can be shaped by additional
species expanding polewards in response to climate change (Firth
et al., 2009). How facilitation can modulate stresses resultant from
climate change for mobile animals such as limpets has been
shown by Moore et al. (2007), finding lower survival of the nor-
thern species, P. vulgata, when clumps of Fucus were removed,
unlike the more southern P. depressa that does not aggregate
under algal clumps. Changes in the species composition of
these two species have implications for the dynamic patchiness
on rocky shores (Hartnoll & Hawkins, 1985; Hawkins et al.,
2008). Thinning of fucoid canopies resulting from climate change
(Hawkins et al., 2009; Yesson et al., 2015) has been experimentally
simulated and can lead to reductions in sub-canopy species
(Pocklington et al., 2018). Positive interactions have been advo-
cated as a tool to combat loss of biodiversity in the face of climate
change (Bulleri et al., 2018a). Experimentally derived knowledge
has also enabled the impacts of oil spills and their subsequent
clean up to be better understood (Southward & Southward,
1978; Hawkins & Southward, 1992; Hawkins et al., 2017a, 2017b).

Extreme events such as hurricanes, marine heatwaves and
floods are predicted to become more frequent with climate change
(Easterling et al., 2000; Oliver et al., 2018). Climate models also
predict that extreme events are becoming more clustered in
time, which implies a change in the distribution of time intervals
between consecutive disturbance events compared with historical
climate scenarios (Easterling et al., 2000). Experimental work has
been performed to assess the ecological effects of changing the
intensity and temporal distribution of perturbations on rocky
shore assemblages. Some studies have done so by manipulating
the frequency of events. This approach allows a direct test of
the ecological effects due to the expected increased frequency of
extreme events. However, manipulating the frequency of pertur-
bations has the drawback of confounding intensity with temporal
variability (clustered vs regularly distributed) of perturbations
(Benedetti-Cecchi, 2003). Appropriate experimental designs
have been proposed to disentangle the effects of changes in
mean intensity from those due to variation in the temporal

patterning of events, also allowing tests of interactions between
intensity and degree of temporal clustering of perturbations
(Benedetti-Cecchi, 2000b, 2003).

These designs have been used to assess the impacts of waves
(Bertocci et al., 2005, 2010; Maggi et al., 2012), desiccation stress
(Benedetti-Cecchi et al., 2006), sediment regimes (Vaselli et al.,
2008) and heatwaves (Dal Bello et al., 2017) on rocky intertidal
assemblages. Overall, the results have shown that the effects of
increasing intensity of perturbations can be offset in part by
increasing degree of temporal clustering. In other words, regard-
less of the nature of the perturbation, results have shown that the
temporally clustered events are in general less detrimental to
rocky shore assemblages than events that are more regularly dis-
tributed in time. Interestingly, an observational study on the
impact of hurricanes on coral reefs in the Caribbean has shown
a similar pattern: impacts were less severe in years when hurri-
canes occurred clustered in time compared with years when
they were regularly distributed (Mumby et al., 2011).

The mechanisms behind this apparent general positive effect of
temporal clustering of perturbations have not been elucidated yet,
but one possibility is that a clustered perturbation scenario allows
for longer periods of recovery compared with where the same num-
ber of perturbations is distributed regularly over the same time win-
dow. A longer period of recovery may be particularly advantageous
if individual perturbations are intense enough so that one event is
sufficient to wipe out most of the organisms from an area. In this
scenario the cumulative effect of a cluster of perturbations will not
be much more different from that of an individual one. Regardless
of the specific mechanism, a positive response to increased cluster-
ing of extreme climate events injects some optimism in the ability
of rocky shore assemblages to cope with the expected increase in
intensity (and temporal clustering) of climate-related perturbations.

The zonation of intertidal organisms has been shown by obser-
vations and experiments to be squeezed from environmental
extremes such as desiccation stress at the top of the shore coupled
with greater consumer pressure from lower down due to biogeo-
graphic shifts (e.g. colder water fucoids in the Azores stressed by
more frequent warmer weather and the spread of herbivorous fish
northwards; Martins et al., 2019). Late winter and early spring
seasonal blooms of light-driven micro-algae and macro-algae
are likely to get curtailed by earlier onset of temperature-driven
grazing pressure (Thompson et al., 2004) as has been shown on
latitudinal gradients in Europe (Jenkins et al., 2000).

Experimental approaches have informed both ecological
enhancement of highly modified urban coastlines as well as adap-
tational responses to climate change by design of environmentally
sensitive sea defences in the face of rising and stormier seas
(Morris et al., 2019). Ironically, early studies of artificial structures
used them primarily as simple surrogates of natural systems with
low topographic complexity and hence ease of study – in many
cases cubist rocky shores. Examples include describing distribu-
tion patterns in relation to tidal height and wave exposure
(Southward & Orton, 1954), plus succession on large breakwater
blocks of known age (Hawkins et al., 1983) both using Plymouth
Breakwater. The importance of grazing interactions in limiting the
lower limit of kelp in the shallow subtidal zone was shown on the
ruined breakwater in Port Erin, Isle Of Man (Jones & Kain, 1967).
Interactions between barnacles and limpets (Hawkins & Hartnoll,
1982b; Santini et al., 2019) and settlement patterns of barnacles in
relation to wind patterns (Hawkins & Hartnoll, 1982a) were all
investigated on the same Raglan Pier in Port Erin. The simplicity
of replicated artificial shore parallel breakwaters at Elmer in
Sussex, UK, enabled the respective roles of grazing by limpets
in preventing establishment of fucoid algae and wave action redu-
cing persistence of older plants to be disentangled by a combin-
ation of field experiments and modelling (Jonsson et al., 2006).
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The full battery of experimental approaches has been deployed
to better understand the efficacy of various interventions to
enhance biodiversity and deliver ecosystem services on artificial
hard substrate habitats in ports and on sea defences – an
approach now termed eco-engineering. Much of this work has
been led from Sydney, Australia, with the development of artificial
rockpools (Browne & Chapman, 2011) and boulder-fields
(Chapman, 2017), including better understanding of the diversity
deficit typical of artificial communities compared with natural
ones (Bulleri & Chapman, 2010). Similarly in Europe the out-
comes of experimental ecology were used in early efforts to
inform guidelines on the design of sea defences (Moschella
et al., 2005; Burcharth et al., 2007) and understanding their
impacts (Martin et al., 2005), enabling putting this work into a
broader ecological and conservation context (Airoldi et al.,
2005). This early work has proliferated to understand the impacts
of what became known as ocean sprawl (Duarte et al., 2012; Firth
et al., 2016; Bugnot et al., 2020; Hawkins et al., 2020) and how
these impacts can be at least partially offset by eco-engineering
interventions (Dafforn et al., 2015; Morris et al., 2019).
Worldwide experimental trials have tested the efficacy of different
types of crevices (Coombes et al., 2015), complexity of tiles (Loke
et al., 2014, 2015), boulder size and mix in gabions (Firth et al.,
2014) and retro-fitted artificial rockpools (Browne & Chapman,
2014; Evans et al., 2016). Guidelines on practice are emerging
(Morris et al., 2019; O’Shaughnessy et al., 2020) and this approach
is now entering the planning (Evans et al., 2016; Evans et al.,
2019) and engineering mainstream (Burcharth et al., 2007).
Additionally along the way some interesting insights have
emerged on rock pool ecology (Firth et al., 2013), topographic
complexity and diversity (Loke et al., 2016; Loke & Todd,
2016), mobile predators using the intertidal zone (Morris et al.,
2017), connectivity of matter and propagules (Bishop et al.,
2017; Heery et al., 2017) plus difficult-to-study boulder shores
(Chapman, 2017). Furthermore, understanding of the nature of
biogeographic boundaries has resulted with breakwaters acting
as ‘experimental’ stepping-stones, enabling range expansions
(Hawkins et al., 2009; Keith et al., 2011; Firth et al., 2015) – an
experiment that no ethical committee would ever allow (Sugden
et al., 2009), nor would a funding body finance.

Concluding comments

Experiments on rocky shores have contributed to both ecological
theory and better understanding of patterns and processes in
coastal ecosystems. It is now informing responses to global change
and creeping urbanization. The coastal zone is being increasingly
squeezed and impacted by both development and climate-driven
change. Experiments help explain patterns and can feed into fore-
cast and prediction of future states. They can also inform better
understanding and hence management of the interactions of mul-
tiple regional and local-scale impacts with global change.
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